Subscribe to Our Newsletter

Success! Now Check Your Email

To complete Subscribe, click the confirmation link in your inbox. If it doesn't arrive within 3 minutes, check your spam folder.

Ok, Thanks

StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis

StyleGAN-T addresses the specific requirements of large-scale text-to-image synthesis to significantly improve over previous GANs and outperform distilled diffusion models in terms of sample quality and speed. Learn more about the model!

Sophia profile image
by Sophia
StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis

Abstract

Text-to-image synthesis has recently seen significant progress thanks to large pretrained language models, large-scale training data, and the introduction of scalable model families such as diffusion and autoregressive models. However, the best-performing models require iterative evaluation to generate a single sample. In contrast, generative adversarial networks (GANs) only need a single forward pass. They are thus much faster, but they currently remain far behind the state-of-the-art in large-scale text-to-image synthesis. This paper aims to identify the necessary steps to regain competitiveness. Our proposed model, StyleGAN-T, addresses the specific requirements of large-scale text-to-image synthesis, such as large capacity, stable training on diverse datasets, strong text alignment, and controllable variation vs. text alignment tradeoff. StyleGAN-T significantly improves over previous GANs and outperforms distilled diffusion models - the previous state-of-the-art in fast text-to-image synthesis - in terms of sample quality and speed.

Video

Sophia profile image
by Sophia
Updated

Data Phoenix Digest

Subscribe to the weekly digest with a summary of the top research papers, articles, news, and our community events, to keep track of trends and grow in the Data & AI world!

Success! Now Check Your Email

To complete Subscribe, click the confirmation link in your inbox. If it doesn’t arrive within 3 minutes, check your spam folder.

Ok, Thanks

Read More