
Universal Guidance for Diffusion Models
Typical diffusion models cannot be conditioned on other modalities without retraining. This work presents a universal guidance algorithm that enables diffusion models to be controlled by arbitrary guidance modalities without the need to retrain any use-specific components.
Abstract
Typical diffusion models are trained to accept a particular form of conditioning, most commonly text, and cannot be conditioned on other modalities without retraining. In this work, we propose a universal guidance algorithm that enables diffusion models to be controlled by arbitrary guidance modalities without the need to retrain any use-specific components. We show that our algorithm successfully generates quality images with guidance functions including segmentation, face recognition, object detection, and classifier signals.
Data Phoenix Newsletter
Join the newsletter to receive the latest updates in your inbox.